Speeding up the Quantification of Data Staleness in
Dynamic Bayesian Optimization

Giovanni Ranieri
Lausanne, Switzerland
giovanni.ranieri@epfl.ch

School of Computer and Communication Sciences
Swiss Federal Institute of Technology in Lausanne

Bachelor Project

June 2024

Responsible Supervisor
Prof. Patrick Thiran Anthony Bardou
EPFL / INDY EPFL / INDY

Abstract

Some algorithms have been proposed to extend Bayesian Optimization (BO) to time-varying
functions. This adaptation is known as Dynamic Bayesian Optimization (DBO). To achieve great
performance, W-DBO from [3] uses a criterion that quantifies how relevant an observation is for
the future predictions of the Gaussian Process. By evolving in time, the optimum of the function
changes, and observations of the function become less relevant due to their lack of information on its
future values. In a long-period time optimization, keeping all of them will impact the performance
of the algorithm. In fact, the sampling frequency will decrease due to the growth of the Gaussian
Process’ inference time. To remove them rapidly, the criterion should be calculated efficiently in
a low-level programming language. By speeding up the computations using C++ to calculate
the criterion, W-DBO shown great improvements over state of the art solutions. We present in
this work (i) the C++ implementation, (ii) the performance of this implementation compared
to a Python implementation, (iii) the performance of W-DBO compared to the state of the art.
Additionally, we develop Python packages for W-DBO and the criterion.

1 Introduction

Black-box optimization algorithms aim to optimize an objective function f : § — R without any
knowledge of its functional form. Challenges of this nature cannot be tackled using methods like
gradient descent, as they rely on first-order derivatives. Such challenges arise for example in networking
[2] and robotics [11], and can be addressed by a framework known as Bayesian Optimization (BO). The
BO framework exploits a Gaussian Process (GP) as a surrogate model to encode beliefs about how the
objective function should behave.

The extension of BO to time-varying functions is known as Dynamic Bayesian Optimization (DBO).
By evolving in time, observations of f become less relevant in time to optimize it. If we denote
n the number of observations at time ¢, the inference time of the GP is O(n?®). In the context of
online optimization [6], we need to sample as fast as possible to keep track accurately of the optimum.
Removing stale data becomes necessary to optimize f continuously and rapidly. Having too much
observations will impact the performance of the algorithm because the sampling frequency will decrease
(i.e. f will evolve faster than we can keep track of the optimum because of the inference time).

The contributions described here are exploited in [3] which aims at addressing data staleness in
DBO. To do so, [3] uses a criterion that estimates how much an observation is relevant to optimize f in
the future. It presents an algorithm (W-DBO) which outperforms state of the art (SOTA) solutions
using this criterion implemented in C++. This criterion has the drawback of being time-consuming.
Implementing the heavy computations in a low-level programming language becomes necessary for
a DBO algorithm, since its performance heavily depends on its computation time. In fact, waiting
too long before querying the next point would reduce the overall efficiency of the optimization as the
maximum of f would change. To compute in short terms this criterion for a better optimization, our
contributions include: (i) the C++ implementation of the criterion, (ii) the comparison of a C++
implementation for the criterion with a Python implementation, (iii) the implementation of the SOTA
solutions to compare the new performance of W-DBO and (iv) the development of Python packages for
W-DBO (wdbo_algo) and the criterion (wdbo_criterion) '.

2 Background

2.1 Bayesian Optimization

BO, as introduced by [7], is an approach to solve black-box optimization problems. BO assumes that
fisa GP GP(0,k), =@’ € S, where k is a kernel function that computes the covariance between
function values. BO takes advantage of a GP because it provides a good best guess estimation with
uncertainty for the next predictions [15]. By conditioning the GP with observations, we obtain a
posterior distribution for future values of f. If we denote D = {(x;,¥;) }1<i<n the set of observations

https: //github.com/WDBO-ALGORITHM

where y; = f(x;) + €, € ~ N(0,02), then for any = € S

f(@)|D ~ GP(u(z),0*(x)) (1)

where the posterior mean and variance are
px) =k’ (z, X)A 'y, (2)
o(x) = k(z,x) — k' (x, X)A 'k(z, X) (3)

with X' = (mlv"’ 7mn)7 Yy= (yla"’ 7yn)a and

A =k(X,X)+ 021, (4)
k(X,Y) = (k (wiawj))z,;g§- (5)

2.2 Dynamic Bayesian Optimization

DBO is an extension of BO for time-evolving functions. We denote the new domain of f by S x T
(where T C R is the time dimension) and the dataset of observations D = {(;,t:, yi) }1<i<n, Where
t; is the time at which x; has been queried. In this framework, time must not be interpreted in the
same way as yet another spatial dimension. By querying f at time tg, the point queried is necessarily
of the form (x,ty) € S x T. Additionally, since the function evolves in time (changing of optimum),
points sampled in the past become less relevant to optimize it in the future (problem called data
staleness). To optimize continuously f in an online setting, the sampling frequency needs also to be high.
Removing stale data is necessary to avoid the BO inference (O(n?), n being the size of the dataset of
observations) to become asymptotically prohibitive, impacting the overall performance of the algorithms.

In the literature, DBO solutions fall into two categories. The first one removes stale data by re-
setting D periodically [4] or when an event is triggered [5]. The second approach (also in [4]) separates
the kernel into two kernels, one for the spatial dimensions kg(x;, z;), «;, ¢; € S, and one for the time
dimension kr(t;,t;), ti,t; € T, ideally to describe complex spatial and temporal dynamics. We discuss
the cons of these solutions in Section (4).

2.3 W-DBO

The approach in [3] is different as it uses a criterion that addresses data staleness by quantifying the
importance of an observation on the future predictions. We describe the criterion before diving into its
C++ implementation. To model the function f, the kernel function takes two points (x,t), (z',t') €
S x T and has the form

k((z,t), (@', 1) = Mes(l|@ — @'||2, L) kr (|t — ¢'], 1) (6)

where A > 0, kg and k7 are isotropic kernel functions for space and time with lengthscales g > 0 and
Ir > 0, respectively (for more details on lengthscales and kernel functions, please refer to [15]).

Let us denote GPs conditioned on D and D = D\ {(z;,t;,v:)}, (®i,t;,y;) € D, with GPp and
GPp. If this removed observation was not relevant, both processes would be very similar. W-DBO
proposes to quantify this relevancy by using the Wasserstein distance Wa(GPp,GP5) between the two
GPs. The criterion is defined as follows

W2 (GPp,GPp)

’(GPD.9P5) = 7 (GPp.GPy) @)
where GPy is the prior distribution. Compared to SOTA solutions, W-DBO do not naively remove
all observations from D, which could erase relevant observations. Instead, it computes upper bounds
on Wa(GPp,GPs) and Wa(GPp,GPy) to approximate (7). This approximation is necessary because
(i) no closed forms for the Wasserstein distance are provided by [3] and (ii) we need to compute the
criterion rapidly, and numerical integration for high accuracy would be too long [12]. The observation
is removed if the approximation of R(GPp,GP5) is small enough [3].

3 CH+ Implementation

In this section, we describe the C++ implementation of the criterion in W-DBO (see lines 10-13 of
Algorithm 1 in [3]). W-DBO was originally fully implemented in Python. To implement the heavy
computations of the criterion in C++, we choose Eigen as linear algebra library [8] because it is a
well-known and good documented library. The rest of W-DBO remains in Python and we use a Python
package called Pybind11 [9] to call C++ methods in Python. The C++ incorporated in W-DBO is
illustrated in Figure (1). After each query of W-DBO, for each observation (x;,t;,y;) € D, we compute
the approximation of (7) denoted by

Ri(GPp,GP3) (8)

Please refer to [3] for a detailed close form. In the following subsections, we present the challenges we
encountered and the solutions we proposed for them.

i = O/ Ri(GPp,GP5
H=DEBO [D =D\ Dl } [o)
\
i< |D|
i=|D|

Figure 1: Simplified schema of W-DBO. The Python part of W-DBO is represented by the red state.
It queries a new point (z,t) € S x T, observes it y = f(x) + ¢, € ~ N(0,03) and adds it into D. The
orange states show the C4-+ implementation. For all 1 < i < |D|, we compute R;(GPp,GP). When
it is done, the remainder of W-DBO takes place in the red state until the next query (and we remove
possibly some observations from D due to their irrelevancy found by the criterion).

3.1 Matrix Inversion

Computing (8) requires many matrix inversions. Inverting a matrix A € R™*" has by default a time
complexity of O(n?). Achieving accuracy in numerical computation of the inverse is challenging. This
accuracy, related to the condition number of A [1], can be improved using the right algorithm depending
on the properties of A. A better way to solve this problem is to not compute directly A~!. Instead,
the idea is to solve linear systems involving A that can be easily solved, for example using the right
matrix decomposition. Suppose you want to compute

x=A""'b (9)

with b € R™ by inverting A and then multiply it by b. Note that this equation is equivalent to solve a
linear system of equations
Az =b (10)

and LU decomposition can be used to solve the system [1]. More specifically, if A = LU, then
x=U"'L"'b (11)

where the inverses of U and L can be computed efficiently and accurately?[13]. The following paragraphs
describe how we used matrix decomposition to compute quantities involving inverse of matrices.

2Note that having a lot of these systems to solve with the same A (which is not our case) then computing directly
A~ could be more efficient [1].

3.1.1 Cholesky Decomposition
Suppose you have a matrix M € R™*"™ that is positive definite (PD). Then, the Cholesky decomposition

M =LL", (12)

where L is a lower triangular matrix, exists and is unique [13]. It allows to compute the following form
without computing explicitly M !

x; =b "M 'b (13)
with b € R™. For Equation (13), L from the Cholesky decomposition is used to solve the system

Ly=b=y=L"b (14)
To compute x1, we do
zi =y y=b" (L)L "0 (15)
M-1

Equation (14), using backsubstitution [1], is easy to solve with L a triangular matrix. In our case,
although M is PD, we use another decomposition called LDLT to avoid numerical instability when
inverting L.

3.1.2 QR decomposition

The QR factorization decomposes the matrix M € R™*™ in
M =QR (16)

where @ is an orthogonal matrix (QQT = I = QT = Q') and R an upper triangular matrix [13].
Any matrix M admits a QR decomposition. It helps to solve the linear system

Mz =b (17)

with b € R™. It implies that
QRx =b= Rx=Q"b. (18)

Similarly to (14), we can use backsubstitution to solve the system (18). Even if QR decomposition
involves about twice as many operations as LU decomposition [13], Eigen’s documentation recommends
to use it for systems with n and m bigger than 10, which is our case.

3.2 Bindings

To retrieve the values of (8) for each observation in D at time ¢, we call a C++ method a single time.
We provide D to Eigen by splitting it into a matrix of points P = (x1,- -+ ,&,), a vector of function
values y = (y1,- - ,yn) and a vector t = (t1,- - ,t,). The method returns an array where each element
is (8), for all 1 <i < mn.

Since we don’t know the size of D at compile time, we use dynamic-sized matrices, which are dynamic
allocated arrays. To avoid copies of big data structures when calling the method, we rely on the
documentation of Pybind11. When returning an ordinary vector to Numpy, Pybind11 saves the vector
and returns a Numpy array that directly references the Eigen vector: no copy of the data is performed.
Passing Numpy arrays or matrices to Eigen is more complex when considering the performance. Eigen
provides a wrapper Eigen: :Ref<MatrixType> to avoid the copy of data structures, but a problem of
storage order comes. Numpy and Eigen use row-major (the data is stored row by row) and column-major
(the data is stored column by column) storage, respectively. For matrices, we solve this problem by
imposing row-major storage to D in Eigen. The main advantage of that is to avoid non-contiguous
storage along the second dimension.

3.3 Auto-differentiation

The purpose of auto-differentiation (AD) is to differentiate a function g. This calculates the derivatives
precisely. In contrast, numerical differentiation only approximates the derivatives [14]. Nowadays,
AD is used in Machine Learning for first-order derivatives (e.g., to implement the backprogagation
algorithm of neural networks). In W-DBO, we need to compute multiple times nth-order derivatives,
1 <n <7, of the function

P(t) = t*(t +p)° (19)

with respect to ¢, where a, b € N and p € R. AD frameworks for arbitrary functions exist but are
very slow. Instead, we create a specific AD framework to focus on what is really needed. It provides
accurate results with a simple and fast implementation.

Our AD framework is developed for products and sums of monomes (¢ + p)® with constants ¢ € R (note
that t® is a special monome with p = 0)3. We use the polymorphism of C++. We have a parent class
Derivative with four child classes Constant, ExpMonome, Sum, Product that derive from Derivative
and implement virtual (abstract) methods. They represent constants, monomes (¢ + p)?, sums of two
expressions and products of two expressions respectively. To prevent the exponential growth of the
number of terms while increasing the order of the derivatives, we do test cases to know which of the
four child types should be returned and avoid unnecessary objects. As an example, a product of a
constant 1 and a monome is transformed into a simple monome, removing 2 objects from the 3 initial.
Figure (2) illustrates this.

tx(t+1) tx(t+1)
/\ /\
1x(t+1) 1xt t+1) ¢
TN SN I
Ox(t+1) 1x1 0xt 1x1 1 1
N SN I

1«0 0x1 1%0 O0=x1 0 0

Figure 2: (Left) The root is the function that we need the first to third order derivatives. Children of
depth 7 > 1 represent the i-th derivatives. Without doing any check on the derivatives, we see that 22
objects have been created. (Right) By doing type checks, we remove unnecessary objects and cut a
branch if some derivatives are zero. In this example, only 8 objects are created.

3.4 Optimization with Vectorization

Vectorization comes from applying the same operation simultaneously to multiple and independent
pieces of data [10]. It is a process available on computer architectures today and increases the speed of
calculations. Compilers are built to recognize operations that could be vectorized, e.g. vector/matrix
manipulations. Vectorization brings an advantage when k(D, D) is computed following (5) and (6). We
can compute its elements sequentially. A better approach is to group intermediate results in matrices
and apply ks and kp on them, letting the compiler optimize the calculations for a faster computation.
Let t = (t1,--- ,tn). To compute kr(t; —t;) for each pair {(z;,t;,v:), (®;,t;,y;)} € D we do

t1—t1 t1—ta -0 T —1n
b o4 b ty—t1 to—ty - ty—ty
tn fn oo e byt to—ty o b —tn

30ne could say that writing the closed forms for derivatives is faster. However (i) it is not modular and (ii) the number
of terms for the closed form grows exponentially with the order of the derivatives.

k‘T(tl —tl) kT(t1 —t2) k‘T(tl —tn)

kp(ts —t1) kp(ts —t2) -+ kp(ts — tn)

zZ, - ZT 7y 7, = (20)

kT (tn - tl) kT(tn - t2) o kT (tn - tn)
Then for kg(||a; — x;||2) for each pair {(x;,t;,v:), (z;,t;,y;)} € D, we use the following relation: for
any pair of real vectors x,y:

llz =yl =[5 + [ly]5 — 2 (=,).

By writing @; = (241, ,%i,q) of (@i, t;,y;) € D, 1 <i <n, we compute
T11 ot T1d]z - lznll3
= (lzallz - lznll3) = Wi = :
Tn1 0 Tpd a3 - lzall3
11 0 Tid 1,1 Tpd <€B1,<I31> <$1,$n>
wo=2| ¢l =2l
Tpi 0 Tpd Tid Tnd <mn’m1> <mn;mn>
ks(ller —z1]3) -+ ks(l|lzn — zal[3)
Wi+ W — W, 25 Wy = : : (21)
ks(llzn —21]13) -+ ks(llzn — 2al[3)

To compute k(D, D), we multiple element-wise (21) with (20) (by using the Hadamard product) and at
the end we multiply by A. More specifically

k(D,D) = \W; & Zs. (22)

To highlight the speed advantage of vectorization, we compare in Section (6) two versions of the C++

implementation: one with vectorization and one without (i.e. computing sequentially each element of
k(D,D)).

4 Implementation of State of the Art

In this section, we present some DBO solutions in more details for (i) an overview on the SOTA
(R-GP-UCB and TV-GP-UCB in [4], and ET-GP-UCB in [5]) and what changes with W-DBO, (ii)
implementing them to compare their performance with W-DBO. Even if we implement these three
DBO solutions using only Numpy (and therefore Python), comparing their performance with W-DBO
is fair because Numpy is also built on top of C/C++ code. Additionally, compared to W-DBO, the
DBO solutions do not have time-consuming calculations.

4.1 R-GP-UCB and ET-GP-UCB

We start with R-GP-UCB of [4] and ET-GP-UCB of [5]. To remove irrelevant observations, R-GP-UCB
resets D periodically, while ET-GP-UCB when an event is triggered. The objective function f is
changing and removing all observations after some time allows the model to adapt to new data without
being influenced by outdated information. More details on the resetting period of R-GP-UCB can be
found in [4]. The event triggered in ET-GP-UCB assumes that if an observation is far away from what
the mean and variance of the GP would imply in the next prediction, then f has changed significantly
and we should reset D for the same reason as R-GP-UCB.

In summary, R-GP-UCB ensures that the learning process remains responsive to recent changes.
Similarly, ET-GP-UCB leverages an event trigger to update the dataset based on significant changes
in the observed data, maintaining an up-to-date model. Both methods aim to balance the trade-off
between exploration and exploitation, ensuring that the GP remains accurate and relevant as new data
is observed and as the function evolves. In contrast, W-DBO proposes to quantify how relevant an
observation is before removing it. Resetting D completely would probably remove observations with
valuable information for the optimization.

4.2 TV-GP-UCB

TV-GP-UCB in [4] models the dynamics of f with two kernels, one for the spatial dimensions and
one for the time dimension. The older the observation is, the less it should contribute for the next
predictions. The time kernel has the form

li—jl

(1—¢)2

(23)

where ¢ and j are indexes of {(x;,t;,v:), (x;,t;,y;)} € D and € € [0, 1] (more details are provided in
[4]). Note that the sampling frequency of this algorithm (and also for R-GP-UCB and ET-GP-UCB) is
discrete, and this one never removes stale data. Again in long-time optimization, the optimum of f is
not tracked accurately. By keeping all observations, the inference time of the GP grows asymptotically,
and the sampling frequency decreases (which induces less queries). Instead, W-DBO (i) removes stale
data to optimize f rapidly on a long-period time and (ii) is more flexible as the time kernel can be any
kernel.

5 Building Python Packages

This section details how the Python packages for the criterion and W-DBO have been built. We used
Pybind11 to create the Python wheels required to install wdbo_criterion. Wheels are a standard
Python distribution format. They are used to install a package and without any C/C++ extensions,
these packages work on any platform (and can be generated on any computer). Because it has C/C++
extensions, wdbo_criterion is called platform specific which means that the wheel created on the
computer needs to be installed on the same platform of the computer, including the same Python version.
To create wheels for each platform and Python version, we use cibuildwheels*. This framework, using
any continuous integration platform, creates virtual environments (Linux, Windows, MacOS) to create
wheels on these platforms.

Since wdbo_algo has no C/C++ extensions, we just need to create a single wheel for any plat-
form and Python version. These packages are uploaded on the Python repository PyPI. They can be
simply installed using the Python package manager pip.

6 Numerical Results

In this section, we show the numerical results of the C++ implementation and the overall performance
of W-DBO compared to the SOTA solutions. We call a run the calculations of (8) for each observation in
D. To analyse the performance of the C++ implementation, we compare the execution time of multiple
runs of two C++ implementation (one with and one without vectorization techniques) with a Python
implementation. The final results are shown on Figure (3) and show great speed improvements with both
CH+ versions. We achieve between one and two orders of magnitude faster compared to the Python ver-
sion. The plot shows also the effectiveness of vectorization techniques as it is this version that runs faster.

The overall performance of W-DBO compared to SOTA solutions is shown in Figure (4). It shows
the normalized average regret of many DBO solutions, including W-DBO (see the plot in [3] for more
details).

4https://cibuildwheel.pypa.io/en/stable/

X 8-dimension py
& 8-dimension c++ version 1 { f
0 8-dimension c++ version 2 1<
10 J(i
c | | }
o ¢
2 Iy
[J)
£ 107 % $
o } 4
8 +
v t
£ 10 t
c x
he
E t
% 1073
w
+
104
0 25 50 75 100 125 150 175

Number of samples (n)

Figure 3: Average execution time of five runs for many sizes of dataset (i.e. |D|) with different
implementations. The blue dots are the Python implementation, the red are the C++ implementation
without vectorization and the pink are with vectorization. The plot is in logscale. We achieve between
one and two orders of magnitude faster with the second C++ version compared to the Python version.

7 Discussion

7.1 Application of DBO

Consider a WLAN (Wireless Local Area Network) created by many Access Points (APs) and we need
to adapt their transmitting power. The power would depend on many factors, for example the data
rate that people, connected to the WLAN, would like to use (which is a dynamic problem). In the
context of DBO, we would like to find the optimal configuration for the transmitting power of each AP.

For this problem, W-DBO can be implemented on the embedded devices that are on each AP. Even if
memory management has been taken into account during the implementation, great improvements
should be made to reduce the resources needed. A non-exhaustive list would be: (i) since many matrices
are symmetric, we could consider only the upper triangular part of the matrices and report the values
to the other half (reducing by 2 many operations), (ii) improving the AD framework by reducing the
number of pointers and matrices used, (iii) working with inplace’s Eigen methods to avoid copies of
data structures during algebra manipulations.

7.2 Profiling of the C++ code

A great way of seeing the performance of a piece of code is by profiling it. Profilers analyses how much
time the code takes to run the different methods, how many memory accesses have been done, etc.
During the C++ implementation, we ended up with a matrix that could not take advantage of matrix
decomposition and linear solvers. This left us no choice than inverting this matrix alone. To be sure
that this inversion was time-consuming, we profiled 300 runs of our vectorized C++ version with exactly
the same inputs. The profiling was done on a computer equipped with an Intel Core i7 9th generation,
RTX2060 GPU with 32GB of RAM. The results are shown in Table (1). In fact, the methods used to
invert this matrix (inverse matrix_cholsky and F_val) consume 50% of the total running time. The
column showing the total time took in minutes is just for completeness in the sense that profiling adds
time in the computations (ie. it is not the real time taken by 300 runs). Some work could be done to
find a way of removing these two methods, giving wdbo_criterion better performance.

Aggregated Results

1.0 StyblinskiTang4d Shekel Hartmann6éd
Eggholder2d Rosenbrock3d Temperature3d
- Rastrigin5d Hartmann3d WLANSd
2 o8 Schwefel4d Powell4d * Avg. Perf.
g Ackley4d
=4
]
% 0.6 T
] ! *
Ed * *
T 0.4
N ¢
© *
£
s 0.2
=
0.0 *
GP-UCB ABO ET-GP-UCB R-GP-UCB TV-GP-UCB W-DBO

Figure 4: Normalized average regrets for many DBO algorithms. The average performance of the DBO
solutions are given in black. W-DBO beats the others with a good margin.

Table 1: Results of profiling the vectorized C++ implementation. The table summarizes 300 runs.
Each run calls the criterion for |D| = 25, dimension of each point d = 5, A = 0.72971242 with RBF
space and time kernels of lengthscales I, = 0.2908291 and l; = 0.18401412. The same dataset D is
provided as inputs for wdbo_criterion. The main method called is wasserstein_criterion (as the
number of call is 300). The second and third methods, used to invert directly this particular matrix
without linear solvers, take 50% of the total running time.

Method’s name Number of call Time inside (%) Time inside
wasserstein criterion 300 100 1h 05m
inverse matrix_cholsky 7'800 36.71 23m 53s

F_val 7'500 24.82 16m 8s
Eigen’s internal method 193'200 23.24 15m 6s
isPsd 15’600 17.06 1im 6s

8 Conclusion

DBO appears in many fields of engineering such as robotics and wireless networks. It takes advantage
of a GP to optimize a time-varying function f, and needs to manage the number of observations kept
during the optimization. In [3], W-DBO proposes to remove observations that are irrelevant for the next
predictions depending on the value of a criterion based on the Wasserstein distance. This irrelevancy,
known as data staleness, is inherent to DBO. As the time goes on, the optimum of f changes and
past observations bring less information on the future function values. Removing them is necessary
and it decreases the inference time of the GP. To continuously optimize f and keep track of the
optimum accurately, the criterion is implemented in C++4, as it involves heavy computations. This work
explains how this implementation has been conducted, presents the numerical and speed improvement
challenges (e.g., inverse of matrices, AD and vectorization), and shows how the implementation is
efficient. Additionally, it provides Python packages for W-DBO and the criterion. Minimize the
resources needed to compute the criterion and find a way to remove inverse matrix_cholsky from
the implementation are works that could be done to improve the overall performance of W-DBO.

References

[1] HM Antia. Numerical methods for scientists and engineers. Vol. 2. Springer, 2012.

[2] Anthony Bardou, Patrick Thiran, and Thomas Begin. “Relaxing the Additivity Constraints in De-
centralized No-Regret High-Dimensional Bayesian Optimization”. In: arXiv preprint arXiv:2305.19838
(2023).

10

Anthony Bardou, Patrick Thiran, and Giovanni Ranieri. This Too Shall Pass: Removing Stale
Observations in Dynamic Bayesian Optimization. 2024. arXiv: 2405.14540 [stat.ML].

Ilija Bogunovic, Jonathan Scarlett, and Volkan Cevher. “Time-varying Gaussian process bandit
optimization”. In: Artificial Intelligence and Statistics. PMLR. 2016, pp. 314-323.

Paul Brunzema et al. “Event-triggered time-varying bayesian optimization”. In: arXiv preprint
arXiv:2208.10790 (2022).

Sébastien Bubeck. “Introduction to online optimization”. In: Lecture notes 2 (2011), pp. 1-86.

Peter I Frazier. “Bayesian optimization”. In: Recent advances in optimization and modeling of
contemporary problems. Informs, 2018, pp. 255-278.

Gaél Guennebaud, Benoit Jacob, et al. “Eigen”. In: URI: hitp://eigen.tuzfamily.org 3.1 (2010).

Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. “pybindl1-Seamless operability between
C++ 11 and Python”. In: URL: hitps://github.com/pybind/pybind11 (2017).

Ken Kennedy and John R Allen. Optimizing compilers for modern architectures: a dependence-
based approach. Morgan Kaufmann Publishers Inc., 2001.

Daniel J Lizotte et al. “Automatic Gait Optimization With Gaussian Process Regression.” In:
IJCAL Vol. 7. 2007, pp. 944-949.

Anton Mallasto and Aasa Feragen. “Learning from uncertain curves: The 2-Wasserstein metric
for Gaussian processes”. In: Advances in Neural Information Processing Systems 30 (2017).

William H Press. Numerical recipes 3rd edition: The art of scientific computing. Cambridge
university press, 2007.

Maximilian E Schiile et al. “LLVM code optimisation for automatic differentiation: when forward
and reverse mode lead in the same direction”. In: Proceedings of the Sizth Workshop on Data
Management for End-To-End Machine Learning. 2022, pp. 1-4.

Matthias Seeger. “Gaussian processes for machine learning”. In: International journal of neural
systems 14.02 (2004), pp. 69-106.

11

