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Abstract :
Neural Processing Units are recent hardware-specialized chips. Primarily composed of AI Engines and commonly incorporated in modern

microprocessors, they serve as fast compute units for specific applications like Digital Signal Processing and Machine Learning. In this

report, we explore the possibility to offload software 5G workloads into a NPU with XDNA AIE-ML architecture from AMD/Xilinx using

MLIR-AIE, an open-source toolkit that targets AI Engines in both Versal and Ryzen AI products. We focus on offloading Discrete Fourier

Transforms from srsRAN, an open-source 5G stack, and run its benchmarks to compete with the CPU implementation. We discuss the

results and the limitations we encountered. In summary, we highlight (i) how MLIR-AIE enables developers to efficiently program the AI

Engines, (ii) encountered issues while programming in this architecture and toolchain, and (iii) the necessary documentation for new

researchers who would like to dig into the software paradigm of AI Engines.

Index Terms: MLIR-AIE, AI Engines, 5G Workloads, Neural Processing Units.

1 Introduction
Neural Processing Units (NPUs) have become the source of many

papers concerning their efficiency for machine learning (ML) and

digital signal processing (DSP) applications (Rösti et al., 2025 and

Taka et al., 2023). As they require intensive computations, opti-

mizing workloads becomes a crucial task in modern engineering,

especially for reducing the energy consumption. These specialized

microarchitectures-based chips are present in many devices, from

mobile phones to servers, allowing developers to accelerate a wide

range of applications, such as in 5G wireless or in HPC, presented

in Brown et al., 2025. In 2023, AMD/Xilinx unveiled their new

generation of AI Engines architecture: XDNA AIE-ML, driven to-

wards ML workloads AMD/Xilinx, 2023a. This pushes developers

to offload workloads on them, requiring a new set of skills such as

understanding how the architecture works, which software tools

to use, and how to program intelligently.

In this report, we used a computer equipped with a NPU with

XDNA AIE-ML, integrated in a Ryzen 7 8845HS microprocessor

(Ryzen AI). We run Discrete Fourier Transforms (DFTs) directly

on the NPU. In addition, it enabled us to run a DFT benchmark of

srsRAN, an open-source and well-supported 5G stack, comparing

their CPU-based implementation with our NPU-based implemen-

tation. The main limitation we encountered is the overhead of

the NPU’s runtime library XRT when executing a DFT. The CPU-

based implementation of srsRAN runs DFTs sequentially, one at a

time. Doing the same with our NPU-based implementation, this

overhead is introduced in every DFT, making our implementation

slower by a factor or 10. Nevertheless, in addition to the solution

we proposed for that, we present the steps to execute these DFTs

with (i) a background summary of the XDNA AIE-ML architecture,

(ii) a detailed explanation on how to use MLIR-AIE as software tool,

(iii) how the DFTs were implemented and optimized and (iv) the

summary of documentation with limitations encountered.

2 Background

2.1 XDNA Architecture

Ryzen AI and Versal Adaptive SoC are two platforms that inte-

grate NPUs. While the first one is a brand of microprocessors, and

the second a general software-programmable and heterogeneous

compute platform, both of them can incorporate a NPU, and more

specifically AI Engines. These small units are the core part of the

different NPU architectures, forming an array of compute units

and capable of sharing data. Microprocessors such as Ryzen AI

incorporate a small amount of these AI Engines, while the second

can contain hundreds of them Taka et al., 2023. Figure [1] shows

a spatial architecture AMD/Xilinx, 2024, representing the XDNA.

It’s a high-performance architecture that uses control and data

flow graphs as the computational model. It contains two different

entities: Compute Tiles (CTs) and Interface/Shim Tiles (STs). This

architecture reflects a flow graph, where data moves inside it in a

synchronous manner. Each CT has its own vector processor unit

(VPU) and an internal memory space, allowing rapid accumulation

of results in the processor’s registers. STs are gateways with the

external memory, optimizing the transfer of data inside and outside

the NPU.

Figure 1. XDNA spatial architecture, where CTs (with the AIE-ML type of

AI Engine) are shown interconnected by different communication systems.

The XDNA architecture has two forms: XDNA1 and XDNA2.

The first one has again two derivations: AIE and AIE-ML, while the

second comes with the code name AIE2P. The hardware changes

between them but its not the purpose of this report, but keep in

mind that challenges arise when it comes to software programming.
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Some features can be implemented in one tool, and some not for

the different derivations.

2.2 XDNA1/AIE-ML Hardware Specifications

To efficiently program our NPU, we present some important low-

level specifications. AIE-ML has been developed for ML applica-

tions. Low-precision (and vector) operations, with fast data transfer

across tiles are just a few examples. Memory Tiles (MTs) are in-

troduced and increases on-chip memory capacity. In Figure [2],

the importance on integer arithmetic is shown AMD/Xilinx, 2024,

where the only floating point data type available is the bfloat16,

a low-precision (8b mantissa) type represented on 16b. The VPU

has a very-long instruction word (VLIW) architecture and allows

multiple instructions at the same time (SIMD). In terms of data

transfer, the spatial architecture uses two main ways for commu-

nication: (i) local memories, and (ii) AXI4-Stream (a protocol for

unidirectional transfer of data). Local memories provide the most

efficient data-sharing path during processing. The CT has access to

the four nearest memory modules in the cardinal directions: north,

south, east (local data memory in the tile itself) and west, allowing

a program to use up to 4 x 64KB of local memory (close to the AI

Engines). Each local memory is divided into 8 memory banks, and

compilers will choose where data is stored, reducing locks when

AI Engines wants to access specific data.

Figure 2. Table summarizing the different precision width of vector data

paths for AIE-ML architecture. Bfloat16 is the only floating point data type

available.

The second method uses DMAs (Data Movement Accelerators),

allowing transfers to any tile in the spatial architecture. What’s im-

portant for a programming point of view is its a 32bits/cycle/stream

transfer. A fixed number of what we call channels are available,
depending on the tile type. Its the number of roadways in and out

the tile. For example, CTs have two in and two out DMA channels.

3 Software Programming
In this section, we start our discussion on the software stack re-

quired to program and execute code on the NPU.

3.1 Introduction

NPUs are not designed for general purpose software, but for op-

timized code running continuously. The software methodology

where you abstract the functionality of a program does not hold.

Application specific programs are the target of these chips. The

software architecture is composed of 3 main blocks: the host code,

the AI Engine low-level configuration and the kernels.

3.1.1 Host Code The host code is the code used at runtime that

start workloads on the NPU. In the context of AMD/Xilinx NPUs,

it uses a binary (.xcblin) file that contains everything useful to run

one or multiple computations.

3.1.2 Kernels The kernel is the actual code running on the NPU.

It’s a function call (potentially calling other functions internally)

with arguments that respect the low-level configuration of the tiles.

As explained before, kernels must be optimized to leverage the

NPU’s architectural features. Kernels are written in C/C++.

3.1.3 Low-level Configuration To run kernels, you need to

write how the data moves to and inside the NPU, what kernel

runs on each tile, among other configurations. A way of doing so

is to define an Intermediate Representation (IR). A tool used by

frameworks to generate these IRs is MLIR (Multi-Level Intermedi-

ate Representation). From Lattner et al., 2020, it ”aims to address

software fragmentation, improve compilation for heterogeneous

hardware, significantly reduce the cost of building domain spe-

cific compilers, and aid in connecting existing compilers together”.

Creating these representations is not an easy task. Fortunately,

other projects try to use high-level programming languages to cre-

ate these MLIRs and use them for programming AI Engines, like

MLIR-AIE where Figure [3] shows a premise
1
.

Figure 3. Example of MLIR inMLIR-AIE.We define what CT to use, allocate

a buffer in the local memory and declare what’s going on inside the AI

Engine.

3.2 Software Tools
Multiple tools are available, and matching their requirements (pro-

gramming languages, OS-specific considerations) with yours is an

important step. The different stacks available are summarized in

Figure [4], each developed by AMD/Xilinx as they target their AI

Engines.

1. Riallto: It’s an open-source project that aims to provide a

user-friendly stack for programming AI Engines in Ryzen AI

microprocessors.

2. MLIR-AIE: It’s a MLIR-based toolchain, open-source, and

provides (i) a user-friendly experience for programming AI

Engines (on Ryzen AI and Versal Adaptive SoC), but also (ii)

deeper tutorials and functionalities to create more advanced

kernels.

3. Ryzen AI Software: This stack is closed-source, and it pro-

vides runtime libraries for optimizing and deploying AI infer-

1 https://github.com/Xilinx/mlir-aie/blob/main/mlir_
tutorials/tutorial-1/README.md
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Figure 4. Summary of AMD/Xilinx Tools for XDNA NPU developement.

Each one highlight the source restriction, the platform targeted, host code

language support and purpose.

ence on AMD Ryzen AI based PC, great for performance and

stability.

4. Vitis Tools: Combining a compiler (xchesscc) and multi-core

AIE design tool (aiecompiler), this closed-source project is

perfect for optimized kernels in DSP, but only available for

Versal Adaptive SoC, not Ryzen AI.

We work with a Ryzen AI NPU (with AIE-ML architecture),

making Vitis Tools useless. We selected MLIR-AIE because C++

host code was a strict requirement for us, as srsRAN’s stack is

built on C++. To efficiently write the low-level configurations, they

provide an API called IRON Hunhoff et al., 2025. It offers a very

high-level interface for developers. In addition, a closer-to-metal

(that we will denote by "CTM") API is available, which does the

same job but the syntax is different, and gives to developers a

better undestanding of what’s going on in the hardware (enabling

tracing for example).

As explain by one of the maintainers: "The purpose of this

repository and LLVM-AIE is to provide open-source toolkits

that target AI Engines in both Versal and Ryzen AI products.

This enables enthusiasts and researchers to build their own

toolchains for AIEs using MLIR or LLVM. Additionally this

repository contains the IRON API and Python libraries for building

applications targeting Ryzen AI NPUs. IRON’s goal is to provide a

close-to-metal interface for fast and efficient programming, this is

a lower level of abstraction compared to the ONNX/PyTorch AI

inference interfaces in the Ryzen AI Software package mentioned

above."
2

3.3 MLIR-AIE
MLIR-AIE is primarily based on LLVM-AIE (also known as Peano).

Its a fork of LLVM, a toolkit for the construction of highly opti-

mized compilers, for targeting AIE architectures. MLIR-AIE is also

a toolchain that creates MLIRs, lowering them until an optimized IR

for AI Engines. The main utility tool is denoted by aiecc.py (you can

2 https://github.com/Xilinx/mlir-aie/issues/2336

search it in the code base). Its main job is to create compact termi-

nal commands for generating ELF (Executable & Linking Format),

xclbin and instruction files for executing kernels. The parameters

are summarized
3
in Figure [5], and Figure [6] summarizes the steps

done by the toolchain. The host code is compiled and linked to

create an executable. The kernel is compiled using either Peano or

xchesscc, the low-level configuration of the NPU is converted in

MLIR, and at the end both of them are combined to create a XRT

binary file and instructions for the NPU using aiecc.py utility tool.

Figure 5. Table taken from MLIR-AIE summarizing the different compila-

tion options with aiecc.py, enabling developers to select for example the

right compiler.

3.3.1 XRT XRT is a combination of user-space and kernel driver

components. Because AI Engines are a new architecture, drivers

are not implemented directly in XRT. A project called xdna-driver
4

adds this support. Following its documentation for Native APIs,

we need to load the binary, instructions file and create an object

holding the targeted device (the NPU in this case). After that we

need to create buffer objects capable of sharing the data from our

external memory to the NPU. A group ID is assigned to each buffer,

and represents in a high-level way the memory bank mentioned

before. When using MLIR-AIE, group IDs 0, 1 and 2 are reserved
for optimization purpose: for the operation code, the instructions

buffer and the instructions size (in kB). The bank into which a buffer

falls only has performance implications, no functional implications.

3.3.2 AIE-API Intrinsics MLIR-AIE uses in addition an API for

optimizing kernels. AIE-API is a portable programming interface

for AIE accelerators. It is implemented as a C++ header-only library

that provides types and operations that get translated into efficient

low-level intrinsics. The API also provides higher-level abstractions

such as iterators and multi-dimensional arrays.

Intrinsics are well-optimized functions defined in compilers,

avoiding automatically generated instructions that sometimes are

not the one the more optimized. The API is well-documented, but

3 https://github.com/Xilinx/mlir-aie/blob/main/mlir_
tutorials/tutorial-10/README.md

4 https://github.com/amd/xdna-driver
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Figure 6. MLIR-AIE toolchain summary

caution to select the right version in the URL. Actually, the 2024-2

is the more stable. Loading and storing data for example from L1

memory into VPU registers can be optimized using this API. We

didn’t use the AIE-ML-API because at the moment of this project

DFTs where not implemented.

4 Discrete Fourier Transforms on XDNA AIE-ML
The workloads we offload on the NPU are Discrete Fourier Trans-

forms (DFTs). All limitations encountered are summarized in Ta-

ble [1] and Figure [7] summarizes the overall structure we used.

We mentioned earlier that two compilers were available. We used

the xchesscc compiler and had to create an intermediate processing

step to convert the output into readable instructions. Details of the

graph are explained in the following subsections, and Appendix [A]

improves the readability by showing the complete code.

Figure 7. General overview of how MLIR-AIE and XRT have been used

to run a DFT kernel. In the Host, the CTM & the kernel are processed

by MLIR-AIE, resulting in multiple files. The C++ Host code using XRT

synchronize the data to be processed by the kernel. The data is managed

by two ObjectFIFOs of_in and of_out.

4.1 CTM Implementation

We mentioned the different communication systems inside the

NPU. ObjectFIFOs abstract a first-in-first-out (FIFO) data sharing

mechanism inside the NPU. An ObjectFIFO is composed by a

depth, a producer tile, one of multiple consumer tiles and a data

type. The producer writes data into the FIFO buffer, and consumers

read from it. Each end can acquire an element to change it, before

releasing it, such that others can use it. This mechanism allows

synchronization, having now only one party accessing a specific

object in the ObjectFIFO at any time, improving performance and

reducing locks. An ObjectFIFO actually creates a buffer on each

end, and it’s these buffers that are filled when data from the CPU

are synchronized with the NPU.

We created two ObjectFIFOs for the DFT kernel, one for

sending the data and the other one for retrieving the results,

each with bfloat16 type. If we denote [(𝑎1, 𝑏1), ..., (𝑎𝑀 , 𝑏𝑀 )] the
complex signal composed of tuples with real and imaginary

parts, we literally send the data in that order. The runtime speed

performance compared having two ObjectFIFOs for real and

imaginary parts separately (and similarly in the NPU-to-CPU

direction) drastically improved.

CTM has to describe a runtime sequence responsible of ac-

tually mapping/filling the host buffers with the ObjectFIFO’s

buffers. In the case of the input signal we have (Figure [8] adds the

second buffer)

1. The host buffer is passed in the host XRT code as an XRT

buffer object

2. The runtime sequence assigns an identifier x_in for the buffer,
with the data type bfloat16.

3. The runtime sequence fills x_in buffer into the ObjectFIFO

of_in. This happens sequentially (first-in, first-out), without
buffering on the ST.

4. The ObjectFIFOs are configured to connect with a CT that

will consume the data. The runtime sequence sequentially

fills data from x_in into the ObjectFIFO, and on the CT, the

core can receive values out of this pipe. The DMAs then

typically take this data and do indeed put this into a buffer.

The ObjectFIFO allocates this buffer.

The order of the XRT’s buffers when running a kernel has to

match the one in the CTM.

Figure 8. Links between XRT’s buffers, runtime sequence and ObjectFIFOs

buffers. Our two buffers on the host side are mapped using a runtime

sequence, with a name, to the ObjectFIFOs buffers on the CT. The ST is

"hidden" as it does not buffer data, just forwarding it.

4.2 Twiddles Generation & Radix-based FFT
Twiddle is another name for complex exponential. Developers have

to evaluate these twiddles before invoking the AIE-API FFT routine.

Because they do not depend on the input signal, synchronizing

them using XRT is not ideal. Instead, we store them as static

arrays in the CT’s local memory, using a header file. The compiler

allocates a limited amount of static heap space for such data. For

𝑁 = 512, we require𝑁 −1 = 511 twiddles, representing around 2𝐾𝐵

of memory, a small portion of the 64𝐾𝐵 available per local memory.

AIE-API’s FFT algorithm works with stages. Using radix-2

4 Master Semestrer Project Report (2025)
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FFT, each stage splits a 𝑁 -point DFT into two smaller
𝑁
2
-point

DFTs, storing sub-results in a temporary variable. We sequentially

apply stages until a base case, following a divide-and-conquer

pattern. For each stage 𝑙 ∈ {𝑁
2
, 𝑁
4
, ..., 1}, the twiddles form an

array of
𝑁
2𝑙

elements

𝛼𝑙 [𝑘] = 𝑒−2𝜋 𝑗
𝑘𝑙
𝑁 𝑘 ∈ {0, 1, ..., 𝑁

2𝑙
− 1}. (1)

When 𝑁 = 512, we have 9 stages. We actually do not use the

standard C library math.h but write directly their numerical values

because (i) its faster than to call the exponential function and (ii) we

need bfloat16 twiddles (the standard exponential function returns a

double). We faced several limitations from the AIE-ML architecture

ifself and the open-source Peano compiler part of LLVM-AIE. For

the architecture, the lack of radix-3 and radix-5 implementation

for AIE-ML architecture lets us compute 𝑁 -point DFTs only for

𝑁 = 2
𝑘
, for 𝑘 ∈ N∗, 𝑘 ≥ 4. For the compiler, it does not support FFT

intrinsics of AIE-API for complex types, even if they are declared
5

(see Figure [10]). To bypass this issue, we requested Vitis Tools

by a form on their website to access xchesscc, the closed-source

compiler for AIE architectures supporting these intrinsics. It still

can be used for Ryzen AI NPUs.

Figure 9. Functions breakdown for a radix-2 FFT using AIE-API where

𝑁 = 512. We apply sequentially the stages on a signal "in" and extract at

the end the "tmp" result.

4.3 Kernel & Optimization Steps
The term tracing refers for a powerful debugging and profiling

technique that captures a detailed record of events happening

within a system’s hardware, such as memory accesses and bus

transactions. MLIR-AIE enables tracing via XRT and takes

advantage of the AIE architecture tracing system. The number of

5 https://github.com/Xilinx/aie_api/issues/3

Figure 10. LLVM-AIE source code (llvm-

aie/clang/lib/Headers/aiev2_scl2vec.h) where we see the declaration of

complex broadcast intrinsics, but commented.

cycles a kernel takes to run has to be minimized, and several steps

have been done for the DFT kernel.

Initially, the full DFT kernel required 23,985 cycles, com-

pared to only 5,517 cycles for the FFT algorithm. We considerably

decreased the cycles by optimizing loops, especially when

creating the complex bfloat16 (cbfloat16) objects from the real and

imaginary parts. As shown in Figure [11], we replaced a loop with

a single pointer to create the cbfloat16 objects required for the FFT.

In addition, we declared every static arrays outside the kernel

to initialize only one time the objects. These two optimizations

reduced the number of cycles to 9600.

Figure 11. In memory before & after loop optimization. On the left, no

optimization results in a loop to create a new array of complex bfloat16.

The right block shows that we can just create a pointer in a single cycle to

interprete the data in that memory region as complex bfloat16.

Another loop at the end of the kernel breaks the result of the

FFT algorithm into real and imaginary components again such that

XRT and MLIR-AIE can synchronize back the result to the host

side. This loop takes 3600 cycles for 𝑁 = 512, more than 30% of the

9600 cycles. Using directly the output of the last stage enabled us

to remove that loop, reducing to around 6000 cycles.

4.4 Own radix-2 FFT?

The AIE-API is referred to as a single-tile API, as it provides func-

tions for one tile only (for example the sequential stages to perform

their FFT algorithm). It implies that we don’t actually use the

computational power of the NPU and its multiple AI Engines. To

perform a DFT onmultiple CTs, wemanually implemented a simple

radix-2 FFT for 𝑁 = 64. Denoting the input signal by 𝑥 , then the

𝑘-coefficient of the DFT can be separated into two terms Heideman

et al., 1984

Master Semestrer Project Report (2025) 5
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𝑋𝑘 =

𝑁
2
−1∑︁

𝑚=0

𝑥2𝑚𝑒
−2𝜋 𝑗 2𝑚𝑘

𝑁︸                  ︷︷                  ︸
𝐸𝑘

+𝑒−2𝜋 𝑗
𝑘
𝑁

𝑁
2
−1∑︁

𝑚=0

𝑥2𝑚+1𝑒−2𝜋 𝑗
2𝑚𝑘
𝑁︸                    ︷︷                    ︸

𝑂𝑘

, (2)

for 𝑘 = 0, ..., 𝑁
2
− 1. 𝐸𝐾 is the DFT of the even-indexed samples

and 𝑂𝑘 the DFT of the odd-indexed samples. We can re-write now

all coefficients with the formulas thanks to the periodicity of the

complex exponentials

𝑋𝑘 = 𝐸𝑘 + 𝑒−2𝜋 𝑗
𝑘
𝑁 𝑂𝑘 ,

𝑋
𝑘+𝑁

2

= 𝐸𝑘 − 𝑒−2𝜋 𝑗
𝑘
𝑁 𝑂𝑘 .

We first compute 32-point DFT on two CTs, and compute the

final result in the last one, before synchronizing back the result. A

ST is always here as gateway with the external memory.

4.5 srsRAN Benchmark

We modified the srsRAN 5G stack to benchmark DFT implementa-

tions.

1. Support for XRT and Eigen. The first one will execute the

kernel and the second provides the bfloat16 type. srsRAN

being with C++17, bfloat16 are only available in the C++23

standard libraries.

2. Implementation of a DFT processor for NPU side-by-side to

the other implementations (CPU and FFTW library).

5 Results
The experiments ran on a GMKtec AMD Ryzen 7 Gaming Mini PC

8845HS K8 Plus, with an AMD Ryzen 7 8845HS microprocessor.

The software stack was built using the XRT version 2.18.0

(2025-01-10), with support from the corresponding XDNA drivers

(v2.18.0). Compilation of AI Engine kernels was handled by the

xchesscc compiler (U-2023.06), part of the Vitis Tools. This setup

ensures compatibility with the latest MLIR-AIE framework.

srsRAN implements benchmarks for various workloads, such as

DFTs. They simply calculate the time for running one DFT, average

the results, and compute the bandwidth in mega samples per

second (Ms/s), with different quantiles, giving to developers a sense

of average, best and worse bandwidth. With 𝑁 = 512, the CPU im-

plementation achieves 400 Ms/s at the 90th percentile, whereas the

NPU implementation reaches only 4 Ms/s at that same percentile

(and even worse with the own radix-2 implementation). We include

a warm-up phase—launching the kernel repeatedly—to amortize

pre-processing overheads (memory allocation, tracing startup, etc.).

Brown et al., 2025 in their results on offloading Fortran in-

trinsics on a Ryzen AI NPU highlights this overhead. AMD/Xilinx

AMD/Xilinx, 2023b explains that "the overhead (of XRT) of

dispatching the commands and arguments to the accelerator can

be between 30𝜇s and 60𝜇s". To isolate overhead, we measured

two empty kernels: one synchronizing DFT-sized data, and one

synchronizing nothing. Both of them took around 45𝜇s. Compared

to the CPU implementation, one DFT takes around 3𝜇s. This

concludes that moving data to and from the NPU was not the issue

(which in fact was taking around 600 nanoseconds). The impact

of the overhead can be minimized by minimizing the number of

calls for the kernel. One of the mainteners of MLIR-AIE writes

that "there aren’t any options to reduce the overhead to zero, but

it can be "hidden" by overlapping useful work on the CPU while

offloading work to an accelerator like the NPU. While the absolute

overheadsmay be difference from accelerator to accelerator, there is

always some cost in migrating work to another compute resource"
6
.

Because srsRAN’s benchmark runs sequentially one DFT

after the other and compute its performance by averaging the

time for each DFT, without any parallelism, the NPU kernel is

drastically impacted when performing this task, always adding

this overhead.

5.1 Documentation
Because AMD/Xilinx provides a huge set of documentation, coming

with code names, we highlight in Table [2] some of them very

useful while working with AI Engines and the different XDNA

architectures.

6 Conclusion
In this project, we explored the feasibility and performance of

offloading Discrete Fourier Transform workloads from a 5G

software stack to a Neural Processing Unit (NPU) based on the

XDNA AIE-ML architecture. Using the MLIR-AIE toolchain and

the AIE-API, we developed and optimized a DFT kernel for a

specific 𝑁 , integrated it into the srsRAN benchmark suite, and

analyzed the resulting performance.

While the NPU offered a programmable and potentially

powerful architecture, our experiments showed that significant

runtime overheads—mainly from the XRT runtime—drastically re-

duced its usefulness for small, sequential workloads such as single

DFT computations. Despite extensive kernel-level optimizations

and the use of complex vector intrinsics, the execution time per

DFT was slower than the CPU-based implementation. It does not

mean offloading workloads on a NPU is not useful, it just means

we need another way of measuring performance, especially in

huge stacks like srsRAN.

The project also served to highlight critical documentation

and tooling gaps that future developers must be aware of when

working with this architecture and software toolchain.

7 Report Notes, Observations & Acknowledgements
This research project has been very interesting from an engineering

point of view. I learned a lot on hardware-specialized chips, how

they are optimized, and how they can be used for offloading heavy

computations, very important in DSP where bandwidth is crucial.

I would like to thank Professor Al Hassanieh, Raphael Cannatà,

Dan Dimitriu, from the SENS laboratory at EPFL, for the support

and help from the very beginning to the end of the project.

Unfortunately, I saw that the hardware we bought for of-

6 https://github.com/Xilinx/mlir-aie/issues/2381
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Table 1
Summary of important limitations encountered while working on the XDNA AIE-ML architecture with MLIR-AIE, AIE-API and XRT.

Name Description

Twiddles Numerical values have to be computed prior to invocation of the AIE-API’s FFT algorithm because of the strict

requirement for bfloat16 data type.

Lack of some radix-based FFT The lack of radix-3 and radix-5 implementation for AIE-ML architecture lets us compute 𝑁 -point DFTs only for

𝑁 = 2
𝑘
, for 𝑘 ∈ N∗, 𝑘 ≥ 4. Because srsRAN uses 𝑁 = 754, advanced considerations have to be done to account that.

Floating point data type XDNA AIE-ML architecture does not support float32, but only bfloat16, which has a lower precision. Float32 can be

emulated in software, but slows down the computations.

Complex data type LLVM-AIE does not support FFT intrinsics of AIE-API for complex types. The use of xchesscc coming with the Vitis

Tools from AMD/Xilinx is mandatory.

XRT’s kernel overhead After experimentation, XRT has an overhead between 30 and 60𝜇s when running a single kernel. The CPU takes

around 3𝜇s to run one DFT. Running one DFT at a time was necessary to benchmark against srsRAN, as they compute

one DFT at a time. Several solutions are discussed in the Result section, involving OpenCL for example.

Trace in MLIR-AIE Tracing is not implemented in IRON API. Any IRON file has to be converted in using CTM implementation.

xchesscc & Instructions file When switching from Peano to xchesscc compiler, we highlight that the instructions file for the NPU is not hexadeci-

mal, a requirement from XRT.

DMA channels in CTs The number of input and output DMA channels of the tiles are an absolute hardware limitation. It limits the number

of ObjectFIFOs, taking each a channel. As mentioned in the introduction, two in and two out DMA channels are

available.

Table 2
Documentation summary for new developers targeting AIE architectures.

Codename Description

AMD AM009 Complete introduction to AIE spatial architecture, with a close look to hardware specification and functionalities. We

remind that Ryzen AI NPUs have only AIE-ML architecture.

AMD AM020 Complete introduction to AIE-ML spatial architecture, the evolution of AIE architecture forML applications. Hardware

specifications are also highlighted, with the main differences with the older architecture.

AMD UG1079 Complete introduction to AIE tools. Standard compilation, AIE Graphs and Utility tools are deeply explained, but its

not mandatory to read everything as MLIR-AIE uses other tools. Still, important concepts are introduced such as

memory stall, but also the tracing and profiling implementation. Lookup tables are also introduced.

AMD UG1076 Main software programming-related documentation for AI Engines. Presents AIE-API with examples. Developers

should ready it carefully.

AIE-API C++ heady only library triggering custom intrinsics for AIE architecture. MLIR-AIE uses also this one, while an

AIEML-API exists.

XRT Native APIs C/C++ Native APIs for runtime execution of AIE kernels, explaining every steps.

floading DSP workloads was not the best one. AIE-ML architecture,

in its name, is for ML applications, not DSP. We spent a huge

time on debugging for nothing because some implementations

where not available for this architecture. We were forced to use

MLIR-AIE with AIE-API for compatibility issues presented before.

This toolchain is very recent, even more for AIE-ML architecture.

The idea of implementing our own radix-2 FFT algorithm, or

more generally use multiple CTs to perform computations,

let us find that AMD/Xilinx proposes solutions in their Vitis

Tools. Nevertheless, Ryzen AI NPUs are chips incorporated in

microprocessors, limiting the number of AI Engines compared to

Versal SoC platforms.

A future project would be to buy two Versal SoC with AIE

architecture and optimize DFTs for 5G, creating a simple

peer-to-peer network and benchmark different implementations of

the DFTs. These chips have hundreds of AI Engines (not 20 as in

Ryzen AI), optimized for DSP applications, and possess already a

documentation as a starting point to implement these DFTs in an

efficient way.
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A Code Review

1 def dft_power_2(dev):
2

3 @device(dev)
4 def device_body ():
5

6 # Number of elements to be loaded in FIFO
7 n = 512 * 2
8

9 # Define types of Data
10 data_type_tile = np.ndarray [(n,), np.dtype[bfloat16 ]]
11

12 # Tile declarations
13 ShimTile = tile(0, 0)
14 ComputeTile1 = tile(0, 2)
15

16 # AIE -array data movement with object fifos
17 of_in = object_fifo("in_data", ShimTile , ComputeTile1 , 2, data_type_tile)
18 of_out = object_fifo("out_data", ComputeTile1 , ShimTile , 2, data_type_tile)
19

20 # Create a handle to an externally -defined kernel
21 dft = external_func(
22 "dft_power_2",
23 [data_type_tile , data_type_tile],
24 )
25

26 # Compute tile
27 @core(ComputeTile1 , "dft_power_2.o", stack_size =0x1000)
28 def core_body ():
29 for _ in range_(sys.maxsize):
30 elem_in = of_in.acquire(ObjectFifoPort.Consume , 1)
31 elem_out = of_out.acquire(ObjectFifoPort.Produce , 1)
32 dft(elem_in , elem_out)
33 of_in.release(ObjectFifoPort.Consume , 1)
34 of_out.release(ObjectFifoPort.Produce , 1)
35

36 # Set up a packet -switched flow from core to shim for tracing information
37 tiles_to_trace = [ComputeTile1 , ShimTile]
38 if trace > 0:
39 trace_utils.configure_packet_tracing_flow(tiles_to_trace , ShimTile)
40

41

42 # To/from AIE -array data movement
43 @runtime_sequence(data_type_tile , data_type_tile)
44 def sequence(x_in , y_out):
45 if trace > 0:
46 trace_utils.configure_packet_tracing_aie2(
47 tiles_to_trace=tiles_to_trace ,
48 shim=ShimTile ,
49 trace_size =8129,
50 shim_burst_length =64
51 )
52

53 in_task = shim_dma_single_bd_task(
54 of_in , x_in , sizes=[1, 1, 1, n], issue_token=True
55 )
56

57 out_task = shim_dma_single_bd_task(
58 of_out , y_out , sizes=[1, 1, 1, n], issue_token=True
59 )
60

61 dma_start_task(in_task , out_task)
62 dma_await_task(in_task , out_task)
63

64 if trace > 0:
65 trace_utils.gen_trace_done_aie2(ShimTile)
66
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67 # Declares that subsequent code is in mlir -aie context
68 with mlir_mod_ctx () as ctx:
69 dft_power_2(dev = AIEDevice.npu1_1col)
70 res = ctx.module.operation.verify ()
71 if res == True:
72 print(ctx.module)
73 else:
74 print(res)

Listing 1: Low-level configuration using IRON API.

1 namespace po = boost:: program_options;
2

3 using DATATYPE = std:: bfloat16_t;
4

5 int main(int argc , const char *argv []) {
6

7 // ------------------------------------------------------
8 // Parse program arguments
9 // ------------------------------------------------------
10 po:: options_description desc("Allowed options");
11 po:: variables_map vm;
12 test_utils :: add_default_options(desc);
13

14 test_utils :: parse_options(argc , argv , desc , vm);
15

16 constexpr int32_t IN_SIZE = 512 * 2;
17 constexpr int32_t OUT_SIZE = 512 * 2;
18

19 // Load instruction sequence
20 std::vector <uint32_t > instr_v =
21 test_utils :: load_instr_sequence(vm["instr"].as<std::string >());
22

23 // ------------------------------------------------------
24 // Get device , load the xclbin & kernel and register them
25 // ------------------------------------------------------
26 // Get a device handle
27 unsigned int device_index = 0;
28 auto device = xrt:: device(device_index);
29

30 // Load the xclbin
31 auto xclbin = xrt:: xclbin(vm["xclbin"].as<std::string >());
32

33 // Load the kernel
34 std:: string Node = vm["kernel"].as<std::string >();
35

36 // Get the kernel from the xclbin
37 auto xkernels = xclbin.get_kernels ();
38 auto xkernel = *std:: find_if(xkernels.begin(), xkernels.end(),
39 [Node](xrt:: xclbin :: kernel &k) {
40 auto name = k.get_name ();
41 return name.rfind(Node , 0) == 0;
42 });
43 auto kernelName = xkernel.get_name ();
44

45 device.register_xclbin(xclbin);
46 xrt:: hw_context context(device , xclbin.get_uuid ());
47 auto kernel = xrt:: kernel(context , kernelName);
48

49 // ------------------------------------------------------
50 // Initialize input/ output buffer sizes and sync them
51 // ------------------------------------------------------
52

53 auto bo_instr = xrt::bo(device , instr_v.size() * sizeof(int),
54 XCL_BO_FLAGS_CACHEABLE , kernel.group_id (1));
55 auto bo_in = xrt::bo(device , IN_SIZE * sizeof(DATATYPE),
56 XCL_BO_FLAGS_HOST_ONLY , kernel.group_id (3));
57
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58 auto bo_out = xrt::bo(device , OUT_SIZE * sizeof(DATATYPE),
59 XCL_BO_FLAGS_HOST_ONLY , kernel.group_id (5));
60

61 void *bufInstr = bo_instr.map <void *>();
62 memcpy(bufInstr , instr_v.data(), instr_v.size() * sizeof(int));
63

64 DATATYPE *bufIn = bo_in.map <DATATYPE *>();
65 bo_instr.sync(XCL_BO_SYNC_BO_TO_DEVICE);
66

67 unsigned num_iter = 1000;
68 float npu_time_total = 0;
69 float npu_time_min = 9999999;
70 float npu_time_max = 0;
71

72 // ------------------------------------------------------
73 // Main run loop
74 // ------------------------------------------------------
75 for (unsigned iter = 0; iter < num_iter; iter ++) {
76

77 auto start = std:: chrono :: high_resolution_clock ::now();
78

79 for (int i = 0; i < IN_SIZE; i += 2) {
80 bufIn[i] = static_cast <DATATYPE >((2.0f));
81 bufIn[i + 1] = static_cast <DATATYPE >(0.0f);
82 }
83

84 bo_in.sync(XCL_BO_SYNC_BO_TO_DEVICE);
85

86 unsigned int opcode = 3;
87 auto run = kernel(opcode , bo_instr , instr_v.size(), bo_in , bo_out);
88 run.wait();
89

90 auto stop = std:: chrono :: high_resolution_clock ::now();
91 bo_out.sync(XCL_BO_SYNC_BO_FROM_DEVICE);
92 DATATYPE* bufOut = bo_out.map <DATATYPE *>();
93

94 std::cout << "running iteration " << iter << std::endl;
95

96 if(bufOut [0] != static_cast <DATATYPE >(512.0f)) {
97 std::cout << "Error" << std::endl;
98 return -1;
99 }
100

101 // Accumulate run times
102 float npu_time =
103 std:: chrono :: duration_cast <std:: chrono :: microseconds >(stop - start)
104 .count();
105

106 std::cout << "Time: " << npu_time << " microseconds." << std::endl;
107

108 npu_time_total += npu_time;
109 npu_time_min = (npu_time < npu_time_min) ? npu_time : npu_time_min;
110 npu_time_max = (npu_time > npu_time_max) ? npu_time : npu_time_max;
111 }
112

113 // ------------------------------------------------------
114 // Print verification and timing results
115 // ------------------------------------------------------
116

117 std::cout << std::endl
118 << "Avg NPU time: " << npu_time_total / num_iter << "us."
119 << std::endl;
120

121 std::cout << std::endl
122 << "Min NPU time: " << npu_time_min << "us." << std::endl;
123

124 std::cout << std::endl
125 << "Max NPU time: " << npu_time_max << "us." << std::endl;
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126 }

Listing 2: Host Code using XRT

1

2 using DATATYPE = bfloat16;
3 using DATATYPE_KERNEL = cbfloat16;
4

5 #define N_DFT 512
6

7 #define DFT_STAGE(VEC , TW, INPUT , OUTPUT) \
8 do { \
9 \
10 aie:: fft_dit_r2_stage <VEC >(INPUT , TW, N_DFT , false , OUTPUT); \
11 \
12 } while(false)
13

14 extern "C" {
15

16 alignas(aie:: vector_decl_align) static DATATYPE_KERNEL tmp[N_DFT];
17 alignas(aie:: vector_decl_align) static DATATYPE_KERNEL y[N_DFT];
18

19 void dft_power_2(DATATYPE *x_in , DATATYPE *y_out) {
20

21 aie:: set_rounding(aie:: rounding_mode :: positive_inf);
22 aie:: set_saturation(aie:: saturation_mode :: saturate);
23

24 #if N_DFT == 16
25

26 #elif N_DFT == 32
27

28 #elif N_DFT == 64
29

30 #elif N_DFT == 128
31

32 #elif N_DFT == 512
33

34 alignas(aie:: vector_decl_align) DATATYPE_KERNEL* __restrict x = (DATATYPE_KERNEL *)x_in;
35

36 DFT_STAGE (256, twiddles_stage0 , x, tmp);
37 DFT_STAGE (128, twiddles_stage1 , tmp , y);
38 DFT_STAGE (64, twiddles_stage2 , y, tmp);
39 DFT_STAGE (32, twiddles_stage3 , tmp , y);
40 DFT_STAGE (16, twiddles_stage4 , y, tmp);
41 DFT_STAGE (8, twiddles_stage5 , tmp , y);
42 DFT_STAGE (4, twiddles_stage6 , y, tmp);
43 DFT_STAGE (2, twiddles_stage7 , tmp , y);
44 DFT_STAGE (1, twiddles_stage8 , y, (DATATYPE_KERNEL *)y_out);
45

46 #endif
47

48 }
49

50 } // extern "C"]

Listing 3: DFT Kernel for N equal to 512. Twiddles are defined in another header file

1 import struct
2

3 with open("build/insts.txt", "rb") as f:
4 data = f.read()
5

6 # Unpack as 32-bit unsigned integers
7 words = struct.iter_unpack("I", data)
8

9 with open("build/insts_hex.txt", "w") as out:
10 for (word ,) in words:
11 out.write(f"{word :08X}\n")

Listing 4: Output of xchesscc converted in readable instructions.
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1

2 srcdir := $(shell dirname $(realpath $(firstword $(MAKEFILE_LIST))))
3

4 include ${srcdir }/../../ makefile -common
5

6 VPATH := ${srcdir }/../../../ aie_kernels/aie2
7

8 device = npu
9 targetname = dft_power_2
10 CHESS ?=true
11

12 aie_py_src=${targetname }.py
13

14 all: build/final.xclbin build/insts.txt
15

16 kristof: build/insts.txt
17

18 build /%.o: %.cc
19 mkdir -p ${@D}
20 ifeq ($(device),npu)
21 ifeq ($(CHESS), true)
22 cd ${@D} && xchesscc_wrapper ${CHESSCCWRAP2_FLAGS} -g -c $< -o ${@F};
23 else
24 cd ${@D} && ${PEANO_INSTALL_DIR }/bin/clang++ ${PEANOWRAP2_FLAGS} -c $< -o ${@F};
25 endif
26 else ifeq ($(device),npu2)
27 cd ${@D} && xchesscc_wrapper ${CHESSCCWRAP2P_FLAGS} -DBIT_WIDTH =8 -c $< -o ${@F};
28 else
29 echo "Device type not supported"
30 endif
31

32 build/aie.mlir: ${srcdir }/${aie_py_src}
33 mkdir -p ${@D}
34 python3 $< ${device} > $@
35

36 build/aie_trace.mlir: ${srcdir }/${aie_py_src}
37 mkdir -p ${@D}
38 python3 $< ${device} > $@
39

40 build/final.xclbin: build/aie.mlir build/dft_power_2.o
41 mkdir -p ${@D}
42 ifeq ($(CHESS), true)
43 cd ${@D} && aiecc.py -v --aie -generate -xclbin --aie -generate -cdo --no-compile -host --xclbin -name=${@F}

\
44 --aie -generate -npu -insts --npu -insts -name=insts.txt $( <:%=../%)
45 else
46 cd ${@D} && aiecc.py --aie -generate -cdo --no-compile -host --xclbin -name=${@F} \
47 --no -xchesscc --no-xbridge \
48 --aie -generate -npu --npu -insts -name=insts.txt $( <:%=../%)
49 endif
50

51 build/final_trace.xclbin: build/aie_trace.mlir build/dft_power_2.o
52 mkdir -p ${@D}
53 ifeq ($(CHESS), true)
54 cd ${@D} && aiecc.py -v --aie -generate -xclbin --no-compile -host --xclbin -name=${@F} \
55 --aie -generate -npu -insts --npu -insts -name=insts.txt $( <:%=../%)
56 else
57 cd ${@D} && aiecc.py --aie -generate -cdo --no-compile -host --xclbin -name=${@F} \
58 --no -xchesscc --no-xbridge \
59 --aie -generate -npu --npu -insts -name=insts.txt $( <:%=../%)
60 endif
61

62 ${targetname }.exe: ${srcdir }/test.cpp
63 rm -rf _build
64 mkdir -p _build
65 cd _build && ${powershell} cmake ${srcdir} -DCMAKE_POLICY_VERSION_MINIMUM =3.5 -DTARGET_NAME=${

targetname}
66 cd _build && ${powershell} cmake --build . --config Release
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67 ifeq "${powershell}" "powershell.exe"
68 cp _build/${targetname }.exe $@
69 else
70 cp _build/${targetname} $@
71 endif
72

73 run: ${targetname }.exe build/final.xclbin build/insts.txt
74 ${powershell} ./$< -x build/final.xclbin -i build/insts_hex.txt -k MLIR_AIE
75

76 run_debug: ${targetname }.exe build/final.xclbin build/insts.txt
77 gdb ./$< core
78

79 trace: ${targetname }.exe build/final_trace.xclbin build/insts.txt
80 python3 instr_to_hex.py
81 ${powershell} ./$< -x build/final_trace.xclbin -i build/insts_hex.txt -k MLIR_AIE -t 8192
82 ${srcdir }/../../ utils/parse_trace.py --filename trace.txt --mlir build/aie_trace.mlir --colshift 1 >

trace_vs.json
83 ${srcdir }/../../ utils/get_trace_summary.py --filename trace_vs.json
84

85 clean_trace:
86 rm -rf tmpTrace trace.txt parse*json trace*json
87

88 clean: clean_trace
89 rm -rf build _build ${targetname }*.exe

Listing 5: Makefile modified for xchesscc compiler.

1 import numpy as np
2

3 def tw(n, radix , vec):
4 n_stage = n / vec
5 points = n_stage / radix
6 return np.exp(-2j * np.pi * np.arange(1, radix).reshape(-1, 1) * np.arange(0, points) / n_stage)
7

8 def generate_twiddles_combined(N):
9 tmp = N // 2
10 stage = 0
11

12 with open("twiddles.hpp", "w") as f:
13 f.write("#pragma once\n\n")
14 f.write("#ifndef __TWIDDLES_HPP__\n")
15 f.write("#define __TWIDDLES_HPP__\n\n")
16 f.write("#include <stdfloat >\n")
17 f.write("using DATATYPE = std:: bfloat16_t ;\n")
18 f.write("const DATATYPE twiddles_512 [] = {\n")
19

20 while tmp >= 1:
21 table = tw(N, 2, tmp)
22 twiddle_pairs = [(val.real , val.imag) for val in table [0]]
23

24 for real , imag in twiddle_pairs:
25 f.write(f" static_cast <DATATYPE >({ real :.5f}f), static_cast <DATATYPE >({ imag :.5f}f), //

stage {stage}\n")
26

27 tmp = tmp // 2
28 stage += 1
29

30 f.write("};\n")
31 f.write("#endif // __TWIDDLES_HPP__\n")
32

33 generate_twiddles_combined (512)

Listing 6: Script that generated the twiddles for each stage
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